Supply Chain AnalyticsÂ
Data-Driven Supply Chain Planning, Optimization and Risk Management
In data analytics since 1989, ScienceSoft helps companies design, develop, integrate and upgrade supply chain analytics solutions.
Supply Chain Data Analytics Solution in Brief
Supply chain data analytics helps plan and optimize supply chain operations based on analytical insights. Supply chain analytics software integrates with ERP, CRM, a procurement management system, an order management system, etc. Solution costs vary from $200,000 to $400,000 for a midsize company.
The Architecture of a Supply Chain Analytics Solution
Supply chain analytics solution usually comprises the following elements:
- Data source layer: Real-time and historical data from internal data sources (a supply chain management system, ERP, CRM, accounting software, smart connected things, etc.) and real-time external data (social media feeds, weather forecasts, social data about strikes, fires, or bankruptcies, etc.).
- Data integration layer: To extract, transform and load historical and real-time supply chain data in the format suitable for storing in a data lake, an operational data store and a data warehouse.
- Data storage layer: To store data in its raw or preprocessed format in the data lake or an operational data store and structure and store data for analytical querying and reporting in the data warehouse.
- Data analytics layer: To run simple analytical queries on operational data, multidimensional analytical queries with OLAP tools on structured historical data, build machine learning and data mining models to facilitate predictive and prescriptive data analysis.
Core Functionality for a Supply Chain Analytics Solution
With 34 years in data analytics, and 11 years - in supply chain management, ScienceSoft designs and builds supply chain analytics solutions with customers' business needs at the core. Still, we reveal some common features, which such solutions include. Below, we share the core functionality:
Key Integrations for Supply Chain Analytics Software
At ScienceSoft, we don't see a supply chain analytics solution as a stand-alone system. To enable it provide valuable insights, ScienceSoft integrates supply chain analytics with the following systems:
- Procurement management system – for spend monitoring and analysis, purchasing trends analysis, spend forecasting, etc.
- Supplier management system – for supplier performance monitoring and analysis, supplier risk analysis, bid analysis, payment terms analysis, AI-based recommendations on supplier assignment to purchase orders, etc.
- Inventory management system – for data-driven inventory allocation across different storage locations, inventory demand planning, lead times prediction, etc.
- Transportation management system – for the overall freight spend analysis, route schedules planning, transportation costs analysis, carrier analysis, shipping method analysis, etc.
- Order management system – for order execution analysis, returned order analysis, delayed order analysis, etc.
- Enterprise resource planning (ERP) system – for analyzing procurement, storage, transportation, etc. costs, identifying how the disruptions in the supply chain influence the bottom line, devise strategies for reducing the end-to-end supply chain costs; for leveraging supply chain analytics insights at all levels of enterprise planning (operational and business planning).
- Customer relationship management (CRM) system – for comprehensive customer demand forecasting and planning.
Cost of Supply Chain Analytics Implementation
The cost of supply chain analytics implementation varies greatly depending on a number of factors, such as:
- Number of data sources for integration (ERP, CRM, order management system, supplier management system, logistics management system, etc.).
- Data complexity (structured, semi-structured, unstructured, real-time, etc.).
- Data volume.
- Complexity of supply chain data cleansing.
- Complexity of data analysis, ML and AI capabilities.
- Data security requirements.
- User training, if necessary.
The cost of a supply chain analytics project, which involves developing a data warehouse, OLAP cubes, and self-service reports and dashboards may range as follows:
- $70,000 - $200,000* – for companies with 200 – 500 employees.
- $200,000 - $400,000* – for companies with 500 – 1,000 employees.
- $400,000 - $1,000,000* – for companies with 1,000+ employees.
*Monthly software license fees are NOT included
Want to know your supply chain analytics costs?
Factors Determining Supply Chain Analytics Success
ScienceSoft's consultants have defined important factors that should be covered to ensure the success of supply chain analytics solutions:
Robust data security
Comprehensive security features such as data anonymization, end-to-end data encryption, fine-grained access control, data masking, etc., ensure the safety of data under analysis and compliance with specific regulations (e.g., GDPR).
Self-service user interface
End users with no tech expertise can use drag-and-drop functionality to create interactive dashboards, drill-down and NLP features to derive actionable insights and share them with colleagues, get AI-based recommendations on next-best actions, etc., which drives supply chain analytics adoption.
Solution scalability
The architectural flexibility of a supply chain analytics solution ensures the ability to seamlessly integrate with new data sources, scale the storage capacity, leverage advanced analytics capabilities, etc.
What You Get with Supply Chain Analytics
The major financial outcomes include:
|
Minimized supply chain risks and optimized product flow Early identification of supply chain disruptions and prediction of the future risks (e.g., extreme price swings due to interruptions in the flow of raw goods) for quick risk assessment and mitigation. |
|
Enhanced supply chain planning End-to-end visibility into and analysis of each component of the supply chain to achieve consistency in procurement planning, production planning, sales planning, etc. and fulfill the demand cost-efficiently. |
|
Maximized ability to meet demand and up to 20-30% fewer inventory costs Accurate demand forecasting, identification of an optimal inventory level, and optimal shipping frequency and quantity help plan capacity and minimize stockouts and overstocks. |
Software ScienceSoft Recommends for Supply Chain Analytics
Below, we list the tools that we frequently use in our supply chain analytics projects.
Microsoft Power BI
Best for
Self-service company-wide supply chain intelligence.
Description
- Facilitated ingestion of supply chain data across the company with 120+ native data source connectors, including pre-built connectors for a data lake and operational databases.
- Self-service data preparation and analytics capabilities for Power BI users to create tailored supply chain data reports and dashboards in minutes.
Pricing
Free Plan.
Power BI Pro – $9.99/user/month.
Power BI Premium:
- $4,995/dedicated cloud storage and compute resources/month
- $20/user/month
Azure Synapse Analytics
Best for
Storing supply chain data for complex analytical querying.
Description
- Integrating supply chain data from hundreds of data sources across the company’s divisions, subsidiaries, etc. to perform analytical querying in seconds.
- Reporting on all management levels, from C-suite to directors, managers and supervisors, is protected with a fine-grained data access control.
Pricing
Compute:
- On-demand pricing: $1.20/hour (DW100c) – $360/hour (DW30000c).
- Reserved instance pricing can save up to 65% over the on-demand option (in a 3-year term).
Data storage: $122.88/TB/month.
Note: No charge for the amount of data processed.
Amazon Redshift
Best for
Warehousing for supply chain big data.
Description
- SQL-querying of exabytes of structured, semi-structured, and unstructured supply chain data across the data warehouse, operational data stores, and a data lake.
- The supply chain data can further be analyzed with big data analytics and ML services.
Pricing
On-demand pricing – $0.25 - $13.04/hour.
Reserved instance pricing offers saving up to 75% over the on-demand option (a 3-year term).
Data storage (RA3 node type): $0.024/GB/month.
Note: No charge for the amount of data processed.
Consider Professional Services for Supply Chain Analytics Implementation
With 34 years in data analytics, ScienceSoft helps businesses design, implement and modernize supply chain analytics solutions to consolidate supply chain data under one roof, achieve visibility into supply chain operations, and support the decision-making for supply chain planning and optimization.
Supply chain analytics software consulting
- Analysis of supply chain analytics needs and the existing supply chain software infrastructure.
- Supply chain analytics solution conceptualization and design.
- Supply chain analytics solution implementation planning (milestones, risk management planning, defining KPIs for measuring supply chain analytics software quality, etc.).
- Business case creation, including cost estimation, time budget estimates.
Supply chain analytics software implementation
- Analysis of supply chain analytics needs and drawing up requirements for supply chain analytics software.
- Supply chain analytics solution conceptualization and tech selection.
- Supply chain analytics solution development.
- Supply chain analytics software quality assurance.
- After-launch support and optimization.
About ScienceSoft
ScienceSoft is an IT consulting and software development company headquartered in McKinney, Texas. We help our clients implement tailored data analytics solutions for the supply chain to turn voluminous supply chain data into insights for informed supply chain risk management, planning and optimization. Being ISO 9001 and ISO 27001 certified, we rely on a mature quality management system and guarantee cooperation with us does not pose any risks to our customers’ data security. Contact us to know more about supply chain analytics software implementation.